CUTAWHISKIE CREEK STREAM AND WETLAND RESTORATION SITE 2008 ANNUAL MONITORING REPORT (YEAR-1)

HERTFORD COUNTY, NORTH CAROLINA NCEEP CONTRACT NO. D06066-A

PREPARED FOR: NCDENR – ECOSYSTEM ENHANCEMENT PROGRAM 1652 Mail Service Center Raleigh, North Carolina 27699-16152

PREPARED BY: RESTORATION SYSTEMS, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Tel (919) 755-9490 Fax (919) 755-9492

AND

ECOSCIENCE: A SUBSIDIARY OF PBS&J 1101 Haynes Street, Suite 101 Raleigh, North Carolina 27604 Tel (919) 828-3433 Fax (919) 828-3518

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	PROJECT BACKGROUND	3
	2.1 Project Objectives	3
	2.2 Project Structure, Restoration Type, and Approach	3
	2.3 Location and Setting	
	2.4 History and Background	5
3.0	PROJECT MONITORING AND RESULTS	7
	3.1 Vegetation Assessment	7
	3.2 Stream Assessment	8
	3.3 Wetland Assessment	12
4.0	METHODOLOGY	12
5.0	REFERENCES	12
APPEN	NDICES	13
	LIST OF TABLES	
	LIST OF TABLES	
Table I	Project Mitigation Objectives and Structure	4
Table I	II Project Activity and Reporting History	5
Table I	III Project Contacts	6
Table I	IV Project Background	7
Table V	V Vegetation Plot Summary	8
Table V	VI Hydrological (Bankfull) Verification	8
Table V	VII Categorical Stream Feature Visual Stability Assessment	8
Table V	VIII Baseline Morphology and Hydraulic Summary	9
Table I	IX Morphology and Hydrologic Monitoring Summary	10
Table Y	X Wetland Criteria Attainment	
г.	LIST OF FIGURES	
_	1: Site Location	
_	2A, 2B: Integrated Problem Area Plan View	* *
_	3: 2008 Precipitation Graph	
rigure	4: N.C. Drought Monitor Data	Appendix C

APPENDIX A: VEGETATION RAW DATA

Vegetation Survey Data Tables Site Vegetation Photo Stations Vegetation Monitoring Plot Photos

APPENDIX B: GEOMORPHOLOGIC RAW DATA

Table B2. Visual Morphological Stability Assessment Cross-Section Plots: B-1 to B-6 and Stream Photos Longitudinal Profile Plot

APPENDIX C: WETLAND RAW DATA

Monitoring Gauge Hydrographs

APPENDIX D: INTEGRATED PROBLEM AREA PLAN VIEW

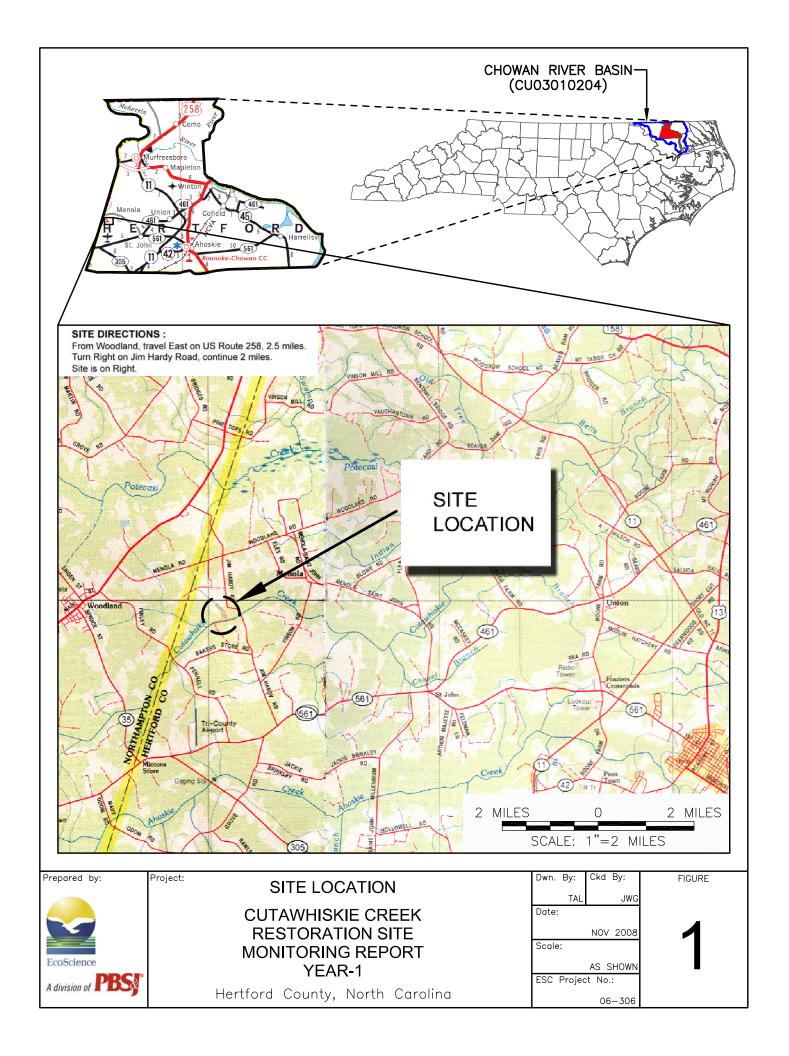
1.0 EXECUTIVE SUMMARY

The Cutawhiskie Creek Restoration Site (hereafter referred to as the "Site") was constructed for the North Carolina Ecosystem Enhancement Program (EEP) to provide compensatory stream and wetland mitigation in the Chowan River Basin. This restoration project is located on an unnamed tributary to Cutawhiskie Creek on a 23.9 acre Site located in Hertford County (Figure 1). The project includes stream restoration (Priority 1) and preservation, as well as riparian wetland restoration and enhancement.

The following report summarizes the monitoring activities that have occurred in the past year (the first year of project monitoring) at the Site. Site construction began and was completed in November 2007. As-built surveys for the Site were performed in February 2008. First year monitoring was conducted throughout the growing season of 2008. The Site must demonstrate vegetative and hydrologic success criteria and a stable restored stream channel for a minimum of five years or until the Site is deemed successful. The following paragraphs summarize the results of the 2008 year monitoring.

Vegetation Monitoring

Vegetation monitoring for Year 1 was performed based on the Carolina Vegetation Survey (CVS) Levels 1 and 2 (Lee et al. 2006). CVS methodology determines density and survival of planted species, and individuals resulting from natural regeneration. Plot locations are shown in Figures 2A and 2b (Appendix D) and are 10m x 10m each. The taxonomic standard for vegetation follows *Flora of the Carolinas, Virginia, Georgia, and surrounding areas* (Weakley, 2007).


Vegetative monitoring success will be achieved by plot data indicating an average number of planted stems per acre exceeding 320 stems/acre after the third year of monitoring and 260 stems/acre after the fifth and final year of project monitoring. Based on Year-1 surveys, the average count of the surviving planted species is 672 stems per acre. If volunteer species are included, the total number of stems increases to 1246 stems per acre. The Site meets and exceeds the established success criteria for vegetation based on the survival of the planted species.

Stream Monitoring

Success criteria for the restored stream reach has been established to confirm that no significant changes have occurred to the dimension, pattern, profile, and bed material over the 5-year monitoring period. Location surveys of the constructed features were conducted to verify the performance of the stream. A total station survey was performed to describe the stream longitudinal profile and six permanent stream cross-sections (3 riffles and 3 pools). Overall, the stream channel bed form and banks are stable. Based on the cross-sections, longitudinal profile and visual observations, the channel dimensions have not changed compared to as-built conditions.

Wetland Hydrology Monitoring

The 2008 hydrologic monitoring results indicate moderate hydrologic success within the Site. Two of the on-Site gauges (Gauges 3 and 4) exhibited saturation within 12 inches of the ground surface for at least 12.5 percent (consecutive days) of the growing season (March 28 – November 7 or 225 days). Gauges 1, 2, and 5 exhibited saturation within 12 inches of the ground surface for 5 to 12.5 percent of the growing

season. Drought conditions throughout the monitoring period likely contributed to the lower than expected hydrologic saturation periods. Data obtained from the North Carolina Drought Management Advisory Council indicates that drought conditions have persisted within Hertford County almost continuously since on-Site construction in November 2007. Figure 3 (Appendix C) shows the monthly precipitation in Hertford County during 2008 compared to the historic monthly rainfall. Figure 4 (Appendix C) displays drought conditions in North Carolina during Year-1 monitoring and shows the progression of drought intensity in the Cutawhiskie Creek watershed.

2.0 PROJECT BACKGROUND

2.1 Project Objectives

Site restoration activities included the excavation of a new stream channel, limited floodplain excavation, removal of stumps and debris, existing channel backfilling, on-Site drainage ditch removal, and final grading and soil preparation within the adjacent floodplain. These activities were proposed to reintroduce surface water flood hydrodynamics from a 0.9-square mile watershed along the newly restored length of stream and floodplain. The new channel was constructed to reflect regional stream characteristics and accommodate bankfull flows. Characteristic wetland soil features, groundwater wetland hydrology, and hydrophytic vegetation communities are expected develop in areas adjacent to the constructed channel. Wetland and adjacent slope soil surfaces were restored and the Site reforested to riparian and upland slope hardwood communities. Plant community associations were designed to mimic various communities described by Schafale and Weakley (1990), including Coastal Plain Levee Forest, Cypress-Gum Swamp, Mesic–Mixed Hardwood Forest, and Coastal Plain Small Stream Swamp.

Specific ecological benefits anticipated as a result of on-Site restoration activities are as follows:

- Stream channel restoration will reintroduce stable bankfull dimension, pattern, and profile along restored stream reaches, which is expected to greatly enhance lotic habitat quality and stream function.
- Floodplain excavation adjacent to restored streams will restore the characteristic flood regime as well as provide a lateral hydrologic input to restored wetland areas adjacent to the UT and within the greater Cutawhiskie Creek floodplain.
- Restored and enhanced wetland areas will help to improve water quality via nutrient removal, increase local vegetative biodiversity, provide wildlife habitat, and serve as a forested corridor, linking the Site with adjacent forested areas.

2.2 Project Structure, Restoration Type, and Approach

The primary restoration features within the Site include the UT to Cutawhiskie Creek and approximately 12.9 acres of drained, hydric soils. The UT has been dredged and straightened, such that it no longer retained stable dimension, pattern, and profile. Side-cast material (spoil piles) from dredging was deposited along the west bank of the channel. A moderate headcut (approximately 2 foot drop in elevation over 20 linear feet of stream channel) was observed near the upstream (north) extent of the Site boundary, indicating vertical instability. Due to its high level of entrenchment because of dredging/incision, large flooding events were confined within the channel at its current dimension.

On-Site restoration activities provide the following project mitigation units:

Cut			Restoration Compone on Site – EEPContrac		
Project Segment or Reach ID	Mitigation Type	Approach	Mitigation Units Linear Footage (LF) or Acreage (AC)	Stationing	Comment
UT to Cutawhiskie Creek (active restoration)	R	P1	2,540 LF	0+00 - 25+40	
UT to Cutawhiskie Creek (passive restoration)	R	NA	359 LF	NA	Passive restoration through floodplain not stationed. Braided reach measured as straight line distance
Stream Preservation (Cutawhiskie Creek)	Р	NA	519 LF	NA	2593 LF actual design units, however only 20 percent is available for SMU
Riparian Wetland Restoration	R	NA	11.9 AC	NA	
Riparian Wetland Enhancement	WE	NA	0.6 AC	NA	1.1 AC actual design units, however only 0.6 LF available as WMU
R = Restoration P = Preservation WE = Wetland Enhancement			P1 = Priority 1 NA = Not applicable		

2.3 Location and Setting

Land uses in the vicinity of the Site consist primarily of agriculture, forest, pastureland, roadside shoulders, and residential lots. Row crops including soybeans, cotton, and corn were actively cultivated on the Site and surrounding areas. The Site is immediately adjacent to a farm and timberland. There is no livestock or poultry production in the vicinity. Timber is actively harvested from adjacent forested areas. A large, contiguous bottomland hardwood stand was harvested just west of the Site along the Cutawhiskie floodplain in the spring of 2006. The Site encompasses approximately 23.9 acres of primary and secondary floodplain associated with Cutawhiskie Creek. The Site includes a UT that flows into Cutawhiskie Creek from the north (Figure 1). Portions of the Site had been logged prior to restoration activities, while other areas within the Site were actively managed for timber or agricultural production. Prior to restoration, the Site vegetation was generally characterized by bottomland hardwood forests along un-logged areas on the Cutawhiskie Creek floodplain and low terraces, row crops including soybeans and corn, and successional communities associated with cut-over timberland.

2.4 History and Background

Table II. Project Activity and Reporting History Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A												
Activity Report	Actual Completion or Delivery											
Restoration Plan	N/A*	December 2007	January 2007									
Final Design (90%)	N/A*	December 2007	January 2007									
Construction	N/A*	N/A*	November 2007									
Temporary S&E mix applied to entire project area	November 2007	N/A*	November 2007									
Permanent seed mix applied to reach/segments	November 2007	N/A*	November 2007									
Bare Root Seedling Installation	February 2008	N/A*	February 2008									
Mitigation Plan	April 2008	February 2008	April 2008									
Minor repairs made filling small washed out areas	N/A*	N/A*	N/A*									
Final Report	N/A*	N/A*	N/A*									
Year 1 Vegetation Monitoring	November 2008	August 2008	November 2008									
Year 1 Stream Monitoring	November 2008	September 2008	November 2008									

^{*}N/A- Activities and reporting history for these items are not applicable to this restoration project

Table III. Pr	oject Contacts
Cutawhiskie Creek Restoration S	Site – EEPContract No. D06066-A
Designer	EcoScience Corporation
	1101 Haynes Street, Suite 101
	Raleigh, NC 27604
	(919) 828-3433
Construction Contractor	Anderson Farms 179 NC 97 East Tarboro, NC 27886 (252) 823-4730
Planting Contractor	Carolina Sylvics 908 Indian Trail Road Edenton, NC 27932 (919) 523-4375
Seeding Contactor	Anderson Farms 179 NC 97 East Tarboro, NC 27886 (252) 823-4730
Seed Mix Sources	Erosion Supply Company 8817 Midway West Rd Raleigh, NC 27617 (919) 787-0334
Nursery Stock Suppliers	South Carolina Super Tree Nursery Company 5594 Highway 38 South Blenheim, SC 29516 (800) 222-1290
Monitoring Performers	EcoScience: A Division of PBS&J
	1101 Haynes Street, Suite 101
	Raleigh, NC 27604
	(919) 828-3433
Stream Monitoring POC	Jens Geratz
Vegetation Monitoring POC	Elizabeth Scherrer

1	ect Background Site – EEPContract No. D06066-A
Project County	Hertford
Drainage Area	0.9 square miles
Impervious cover estimate (%)	<1 percent
Stream Order	1st order
Physiographic Region	Coastal Plain
Ecoregion (Griffith and Omernik)	Mid-Atlantic Flatwood
Rosgen Classification of As-built	E5
Cowardin Classification	Stream (R3UB2)
Dominant soil types	Craven fine sandy loam (Aquic Hapludults)
	Leaf loam (Typic Albaquults)
	Wilbanks silty clay loam (Cumulic Humaquepts)
Reference Site ID	Black Branch, Bullard Branch, UT to Town Creek
USGS HUC for Project	03010204
NCDWQ Sub-basin for Project	03-01-02
NCDWQ classification for Project	C-NSW
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a 303d	No
listed segment?	
Reasons for 303d listing or stressor	N/A
Percent of project easement fenced	N/A

3.0 PROJECT MONITORING AND RESULTS

3.1 Vegetation Assessment

Vegetation monitoring (10 X 10m²) plots have been established to monitor planted vegetation within Site restoration and enhancement areas. Site vegetation was monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey (CVS) (CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Sampling Only, Version 4.0, 2006). Established vegetation monitoring plot locations are displayed on the Integrated Problem Area Plan View (Appendix D). Vegetative monitoring success will be achieved by plot data indicating an average number of planted stems per acre exceeding 320 stems/acre after the third year of monitoring and 260 stems/acre after the fifth and final year of project monitoring. During Year-1 monitoring, the Site met vegetation success criteria with an average of 672 planted stems per acre. The following Table V summarizes vegetation plot density for Year-1 monitoring. Refer to Appendix A for vegetation data collected during Year-1 Monitoring. No vegetation problem areas were identified during Year-1 monitoring.

Table V. Vegetation Plot Summary Planted Stems per Acre Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A												
Plot	MY-01	MY-02	MY-03	MY-04	MY-05							
1	728											
2	688											
3	688											
4	688											
5	567											
MEAN	672											

3.2 Stream Assessment

Т	Table VI Hydrological (Bankfull) Verifications											
Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A												
Date of Photo												
Date of Data Collection	Occurrence	Method	Number									
No bankfull events recorded during Year-1 monitoring	NA	NA	NA									

	Table VII. Categorical Stream Feature Visual Stability Assessment											
Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A Segment/Reach: 2,540 feet												
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05						
A. Riffles	100%	100%										
B. Pools	100%	100%										
C. Thalweg	100%	100%										
D. Meanders	100%	100%										
E. Bed General	100%	100%										
F. Bank Condition	100%	100%										
G. Rock Vanes	N/A	N/A										
H. Root Wads	N/A	N/A										

To ensure stable bankfull dimension, pattern, and profile along the restored channel, annual stream assessment surveys were undertaken. A longitudinal profile along the entirety of the UT and six stream channel cross-sections were established and surveyed to monitor any potential instability and adverse changes in channel geometry (Integrated Problem Area Plan View [Appendix D] for cross-section locations). Profile and cross-section plots are located in Appendix C. Channel geomorphic data is summarized on Tables VIII and IX. Success criteria for stream restoration and Level 1 enhancement will include 1) successful classification of the reach as a functioning system (Rosgen 1996) and 2) channel stability indicative of a stable stream system. No stream problem areas were identified during Year-1 monitoring.

Table VIII. Baseline Morphology and Hydraulic Summary Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A

			Cu	tawhisk	tie Cree	k Resto	ration S	Site – E	EPCont	ract No	. D0606	6-A						
Parameter	USC	GS Gage	Data	Regiona	al Curve	Interval	Pre-Ex	isting Co	ndition	Proj	ect Refer Stream	ence		Design			As-built	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	N/A	N/A	N/A	N/A	N/A	9.0	8.4	9.6	9.1	7.2	9.8	8.7	6.0	8.0	7.0	6.4	7.5	7.0
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	12	13	12.5	175	225	200	150+	150+	150+	150+	150+	150+
BF Cross Sectional Area (ft ²)	N/A	N/A	N/A	N/A	N/A	9.5	64	137	100.5	9	11.5	10.2	7.0	11.0	9.0	6.6	10.4	8.7
BF Mean Depth (ft)	N/A	N/A	N/A	N/A	N/A	0.9	0.9	1.1	1.0	1.1	1.3	1.2	0.7	1.4	1.3	1.0	1.4	1.2
BF Max Depth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	1.5	1.7	1.6	1.5	1.9	1.7	1.5	3.5	1.8	1.5	3.1	2.4
Width/Depth Ratio	N/A	N/A	N/A	N/A	N/A	10.0	8.7	9.3	9.0	5.5	8.4	7.4	4	5.7	5.4	6.4	5.4	5.8
Entrenchment Ratio	N/A	N/A	N/A	N/A	N/A	N/A	1.3	1.4	1.35	20.3	23.1	21.4	1.2	5.9	>18.0	1.2	5.9	4.3
Wetted Perimeter(ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7.6	35.6	17.6
Bank Height Ratio							3.4	5.0	4.2	1.1	1.3	1.2	1.0	1.1	1.0	1.0	1.1	1.0
Hydraulic radius (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.7	1.2	0.9	0.7	1.2	0.9
Pattern																		
Channel Beltwidth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	12.0	113.0	38.3	28.0	49.0	40.0	28.0	49.0	40.0
Radius of Curvature (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	7.0	58.0	19.4	9.0	14.0	11.0	9.0	14.0	11.0
Meander Wavelength (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	28.0	175.0	75.7	40.0	60.0	50.0	40.0	60.0	50.0
Meander Width ratio	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	2.1	21.6	8.1	5.7	10	7.9	5.7	10	7.9
Profile																		
Riffle length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	N/A	N/A	N/A	3.0	25.0	12.0	3.2	21.3	11.1
Riffle slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	N/A	N/A	N/A	0.00	0.050	0.001	0.000	0.082	0.013
Pool length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	5.0	84.0	29.8	4.0	25.0	12.0	4.1	25.6	13.4
Pool spacing (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A*	N/A*	N/A*	19.0	113.0	52.6	8.0	30.0	20.0	10.4	36.3	20.0
Substrate																		
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	1.5	1.5	1.5	N/A	N/A	N/A	NA	NA	NA
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	1.9	1.9	1.9	N/A	N/A	N/A	NA	NA	NA
Additional Reach Parameters																		
Valley Length (ft)		N/A			N/A			2,200			N/A			1,775			1,775	
Channel Length (ft)		N/A			N/A			2,200			N/A			2,540			2,540	
Sinuosity		N/A			N/A			1.0			1.4-1.6			1.4			1.4	
Water Surface Slope (ft/ft)		N/A			N/A			0.0031		0.002				N/A			0.0004	
BF slope (ft/ft)		N/A			N/A			N/A		0.004			N/A			0.0005		
Rosgen Classification		N/A			N/A			G5			E5			E5			E5	
Habitat Index / Macrobenthos		NA			N/A			N/A			N/A			N/A			N/A	

^{*} No Distinct Riffles and Pools or Repetitive Channel Pattern due to Dredging and Straightening

Table IX. Morphology and Hydraulic Monitoring Summary Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A

Parameter			s-Section Pool	1			Cro	ss-Sec Riffl	ction 2			Cı	ross-S Po	ection	3		Cross-Section 4 Riffle						
			1 001			Mille							PU	001			Killic						
Dimension	MY1	MY2 MY	73 MY4	MY5 M	IY+ M	AY1 N	MY2 M	IY3 N	MY4 N	IY5 MY+	MY1 N	MY2	MY3	MY4	MY5	MY	MY1	MY2	MY3	MY4	MY5	MY	
BF Width (ft)	17.4				9	9.1					26.9						7.9						
Floodprone Width (ft)	150+				1	50+					150+						150+						
BF Cross Sectional Area (ft ²)	18.9				9	9.0					26.4						9.4						
BF Mean Depth (ft)	1.1					1.0					1.0						1.2						
BF Max Depth (ft)	2.7					1.9					3.1						1.8						
Width/Depth Ratio	15.9				9	9.2					27.5						6.6						
Entrenchment Ratio	8.6				1	16.5					5.6						19.0						
Wetted Perimeter(ft)	20.8				1	10.7					28.8		-				9.0						
Hydraulic radius (ft)	0.9				•	0.8					0.9						1.0						
Substrate																							
d50 (mm)	Silt				Š	Silt					Silt						Silt						
d84 (mm)	Silt				Š	Silt					Silt						Silt						
Parameter	N	IY-01 (20	08)	MY	7-02 (2	2009)		M	Y-03 (2	010)	M	Y-04 ((2011))	M	IY-05	(2012)	MY+				
Pattern	Min	Max	Med	Min	Max	M	led I	Min	Max	Med	Min	Ma	x I	Med	Min	M	ax :	Med	Min	Max	N	Лed	
Channel Beltwidth (ft)	28.0	49.0	40.0																				
Radius of Curvature (ft)	9.0	14.0	11.0																				
Meander Wavelength (ft)	40.0	60.0	50.0																				
Meander Width ratio	5.7	10	7.9																				
Profile																							
Riffle length (ft)	4.0	21.0	11.5																				
Riffle slope (ft/ft)	0.000	0.074	0.007																				
Pool length (ft)	1.0	23.8	12.5																				
Pool spacing (ft)	9.6	36.0	20.6																		\bot		
Additional Reach Parameters																							
Valley Length (ft)		1,775																					
Channel Length (ft)		2,540																					
Sinuosity		1.4																					
Water Surface Slope (ft/ft)		0.0004																					
BF slope (ft/ft)		0.0005																					
Rosgen Classification		E5																					

						_		nd Hydrauli n Site – EEP		_		-								
Parameter	Arameter Cross Section 5 Riffle					Cross Section 6 Pool														
								T		1	T	П	1	T		1	1	T		
Dimension	MY1	MY2	MY3	MY4 MY5	MY+	MY1 MY2	MY3	MY4 MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5 MY+
BF Width (ft)	7.0					15.1														
Floodprone Width (ft)	150+					150+														
BF Cross Sectional Area (ft ²)	6.7					16.8														
BF Mean Depth (ft)	1.0					1.1														
BF Max Depth (ft)	1.4					2.7														
Width/Depth Ratio	7.4					13.5														
Entrenchment Ratio	21.5					10.0														
Wetted Perimeter(ft)	7.8					17.1														
Hydraulic radius (ft)	0.9					1.0														
Substrate																				
d50 (mm)	Silt					Silt														
d84 (mm)	Silt					Silt														

3.3 Wetland Assessment

Success criteria for wetland hydrology require that restored areas be inundated or saturated by groundwater within 12-inches of the ground surface for a period of 12.5% of the growing season. The growing season in Hertford County begins on March 28 and ends on November 17 (225 days). In order to achieve hydrologic success, saturation within 12 inches of the ground surface is required for 29 consecutive days. The results of the Year-1 hydrologic monitoring indicate moderate success within the Site. Two of the on-Site gauges (Gauges 3 and 4) exhibited saturation within 12 inches of the ground surface for at least 12.5 percent (consecutive days) of the growing season while gauges 1, 2, and 5 exhibited saturation within 12 inches of the ground surface for 5 to 12.5 percent of the growing season. Drought conditions throughout the monitoring period likely contributed to the lower than expected hydrologic saturation periods. Figure 3 shows the monthly precipitation for Hertford County in 2008 with the 30th and 70th percentile rainfall amounts. Monthly rainfall amounts were below the 30th percentile in five out of the nine months in the growing season. Figure 4 displays the nearly continuous drought conditions in Hertford County in 2008 as recorded by the NC Drought Management Advisory Council. Table X summarizes wetland hydrology criteria for Year-1 monitoring.

		Table	X. Wetlan	d Criteria Atta	inment									
	Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A													
	Gauge Hydrology Threshold Tract Vegetation Vegetation Density Met Tract													
Tract	Gauge ID	Met?	Mean	Plot ID	(320 stems/acre)	Mean								
1	1	No		1	Yes									
1	2	No		2	Yes									
1	3	Yes	40%	3	Yes	100%								
1	4	Yes		4	Yes									
1	5	No		5	Yes									

4.0 METHODOLOGY

No unavoidable deviations from initially prescribed methodologies were implemented as part of Year-1 monitoring activities.

5.0 REFERENCES

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006 CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm)

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology (Publisher). Pagosa Springs, Colorado.

Weakley, A.S. 2007. Flora of the Carolinas, Virginia, Georgia, and surrounding areas. Working draft of January 2007. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina. 1015pp.

APPENDIX A: VEGETATIVE DATA 2008 Monitoring Report DENR Contract No. D06066-A Appendix A

Table 1. Vegetation Metadata

Report Prepared By	Jeffrey Siceloff
Date Prepared	11/19/2008 8:58
database name	cvs-eep-entrytool-v2.2.6.mdb
database location	C:\Documents and Settings\23508\My Documents
computer name	RAL5Z0DXF1
file size	40464384
DESCRIPTION OF W	ORKSHEETS IN THIS DOCUMENT
	Description of database file, the report worksheets,
Metadata	and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per
	acre, for each year. This includes live stakes, all
Proj, total stems	planted stems, and all natural/volunteer stems.
	List of plots surveyed with location and summary
Plots	data (live stems, dead stems, missing, etc.).
	Frequency distribution of vigor classes for stems
Vigor	for all plots.
	Frequency distribution of vigor classes listed by
Vigor by Spp	species.
	List of most frequent damage classes with number
	of occurrences and percent of total stems impacted
Damage	by each.
Dumage	of turn.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of total living stems of each
	species (planted and natural volunteers combined)
ALL Stems by Plot and spp	for each plot; dead and missing stems are excluded.
PRO	OJECT SUMMARY
Project Code	D04020
• 4 37	
project Name	Cutawhiskie Stream Restoration
Description Divor Pagin	restoration monitoring
River Basin	Chowan 2,540
length(ft)	2,340
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	5
	1 -

Table 2 Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing	Unknown
	Liquidambar							
	styraciflua	1						
	Nyssa biflora	1	15	11	2	10		
	Quercus lyrata		18			1		
	Quercus michauxii		3					
	Quercus pagoda		4					
	Quercus phellos		7					
	Taxodium distichum	1	15	4	1	1		
TOT:	7	3	62	15	3	12		

Table 3.Vegetation Damage by Species

	Species	All Damage Categories	(no damage)
	Liquidambar		
	styraciflua	1	1
	Nyssa biflora	39	39
	Quercus lyrata	19	19
	Quercus michauxii	3	3
	Quercus pagoda	4	4
	Quercus phellos	7	7
	Taxodium distichum	22	22
TOT:	7	95	95

Table 4. Vegetation Damage by Plot

	plot	All Damage Categories	(no damage)
	D06066a-12345-0001-year:1	19	19
	D06066a-12345-0002-year:1	22	22
	D06066a-12345-0003-year:1	22	22
	D06066a-12345-0004-year:1	17	17
	D06066a-12345-0005-year:1	15	15
TOT:	5	95	95

Table 5. Stem Count by Plot and Species

Species	Total Planted Stems	# plots	avg#	plot D06066a- 12345- 0001- year:1	plot D06066a- 12345- 0002- year:1	plot D06066a- 12345- 0003- year:1	plot D06066a- 12345- 0004- year:1	plot D06066a- 12345- 0005- year:1
Liquidambar styraciflua	1	1	1				1	
Nyssa biflora	29	4	7.25	4	10	10	5	
Quercus lyrata	18	4	4.5		1	3	7	7
Quercus michauxii	3	1	3	3				
Quercus pagoda	4	2	2		2			2
Quercus phellos	7	1	7	7				
Taxodium distichum	21	5	4.2	4	4	4	4	5
Total	83	7		18	17	17	17	14

Photo Stations

Photo Station 1

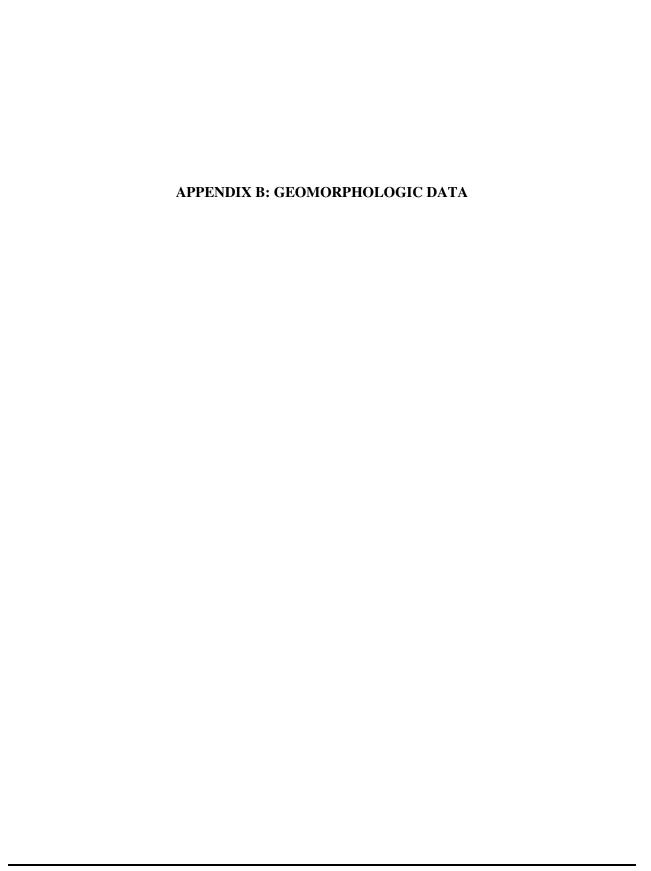
Photo Station 2

Photo Station 3

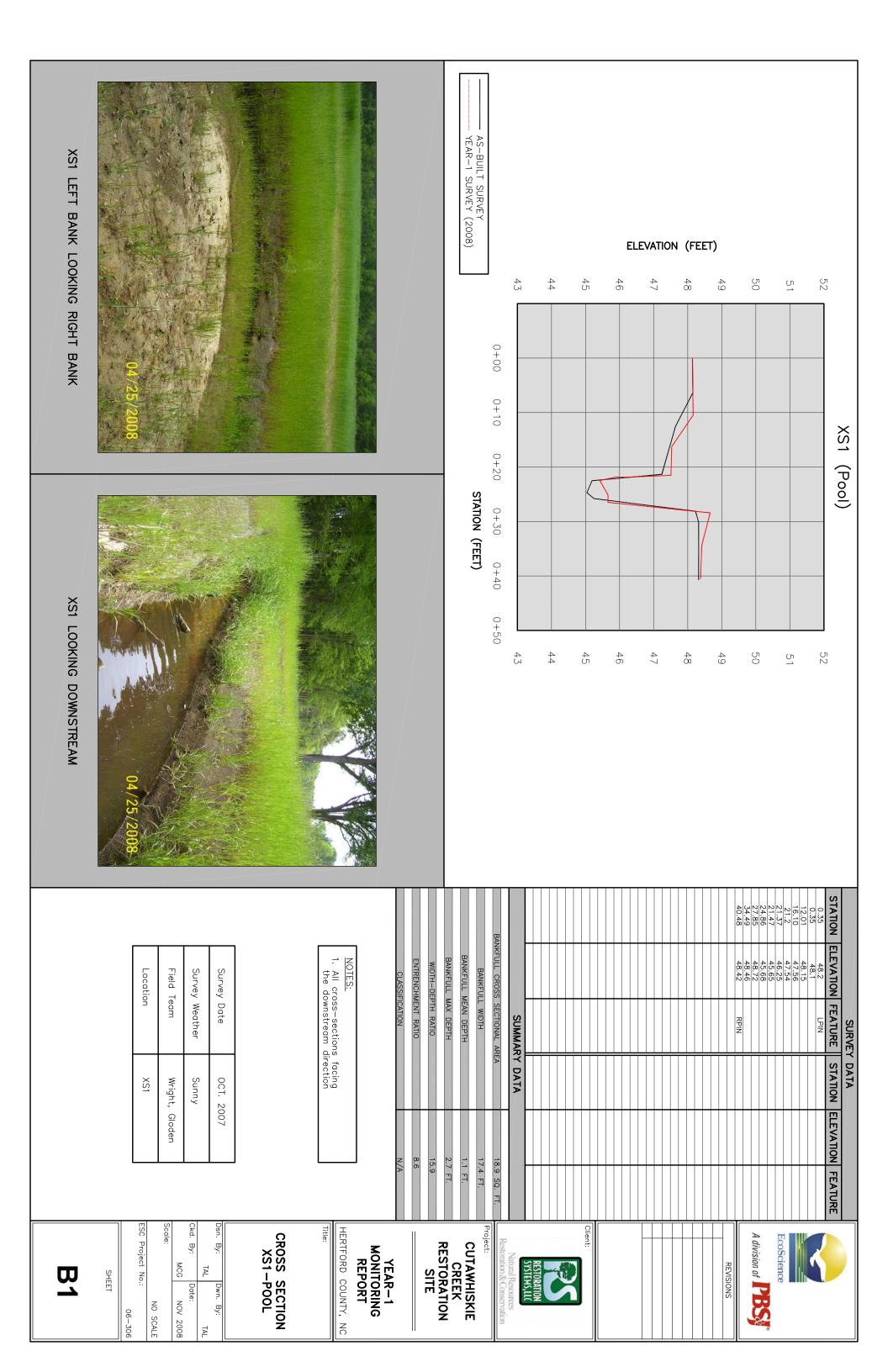
Vegetation Plots

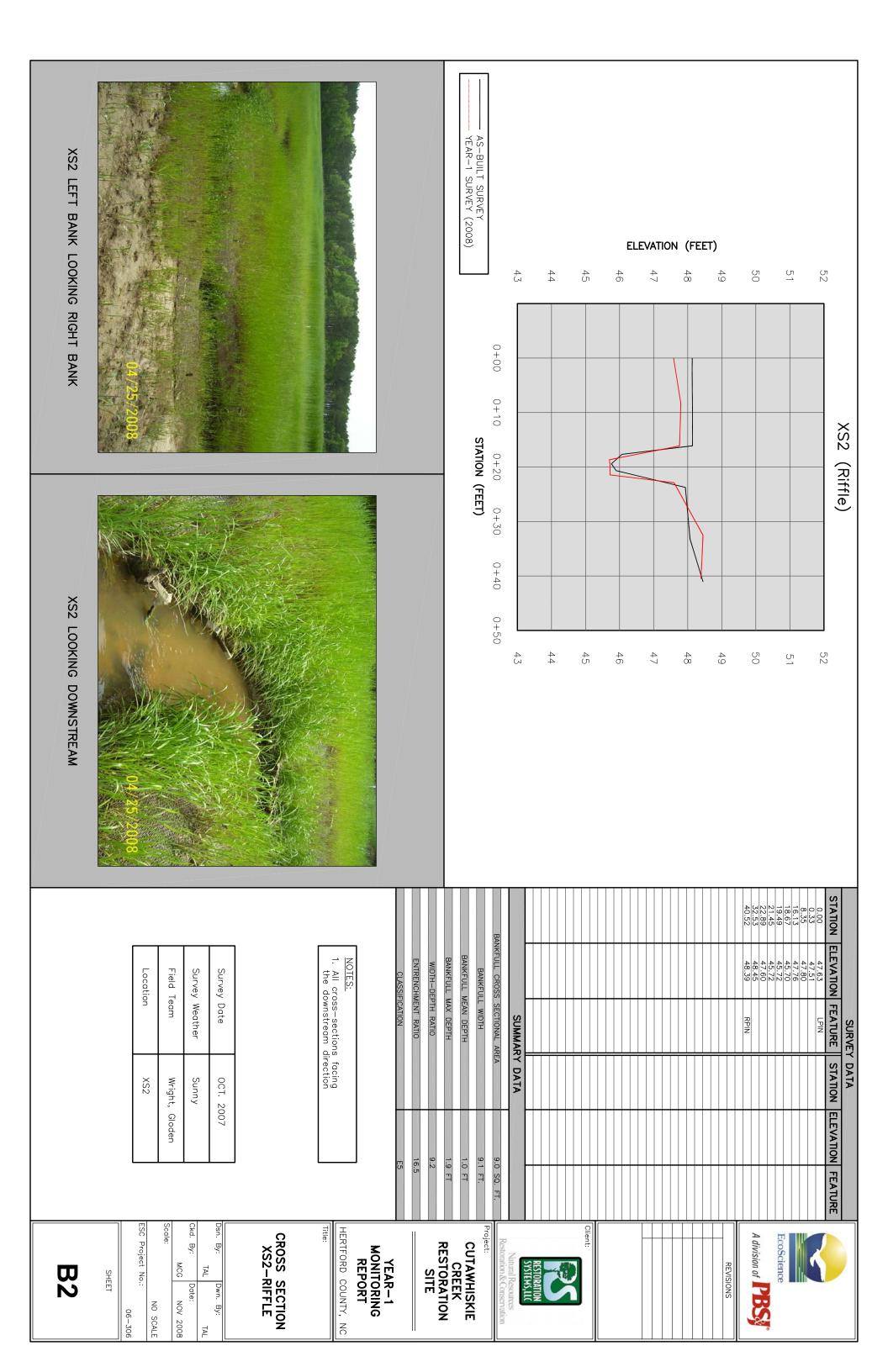
Vegetation Plot 1

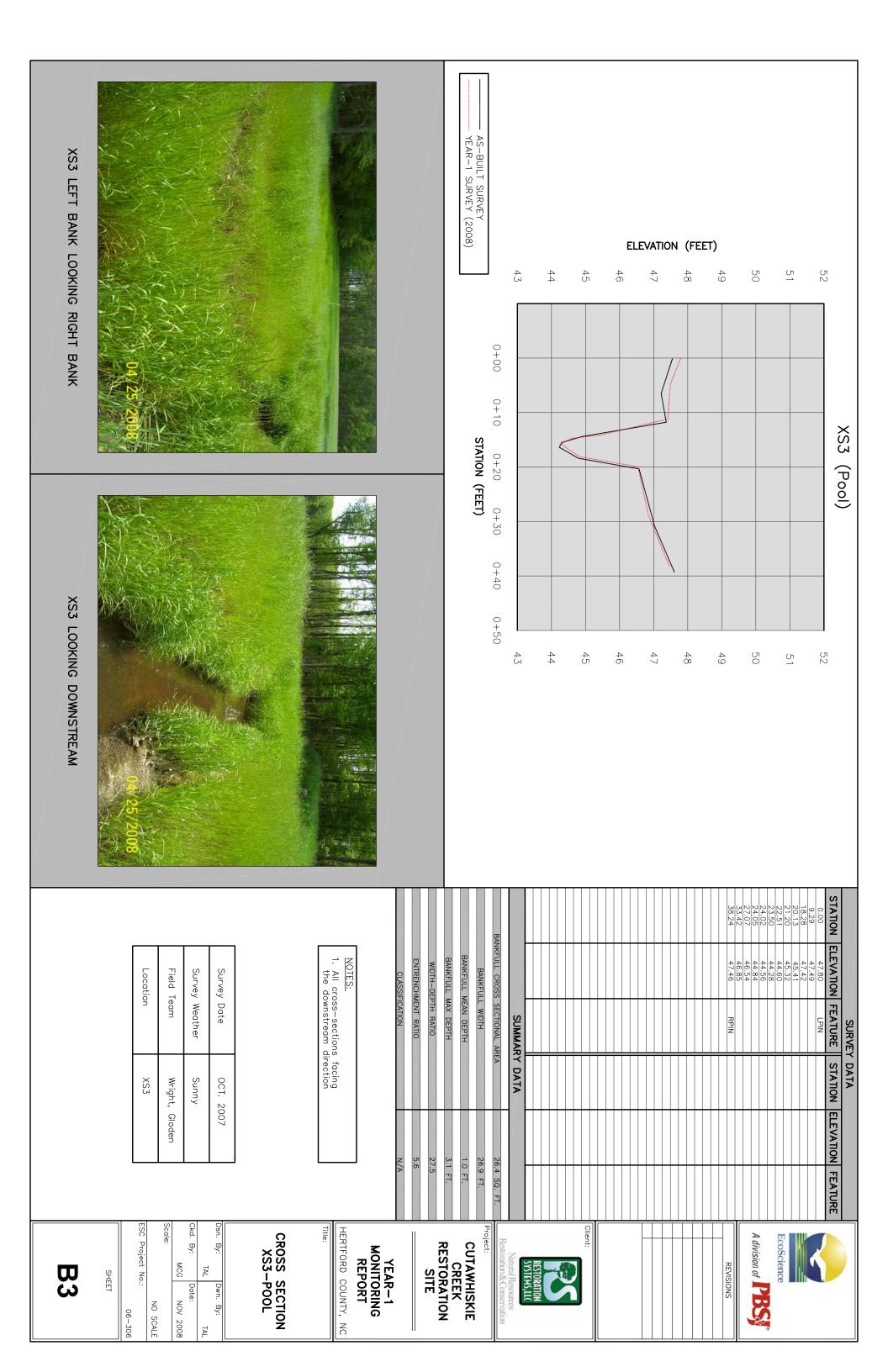
Vegetation Plot 2

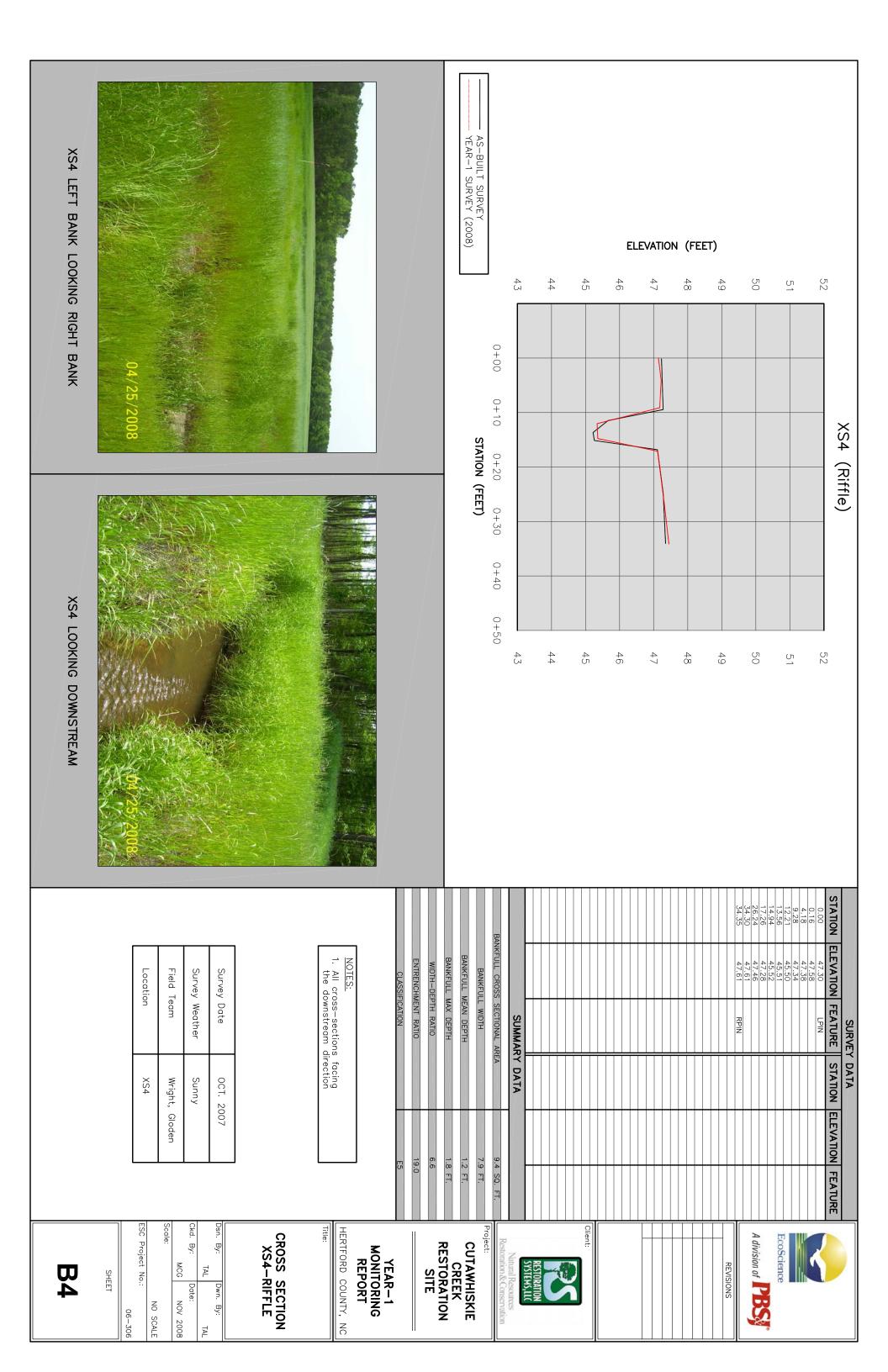

Vegetation Plot 3

Vegetation Plot 4

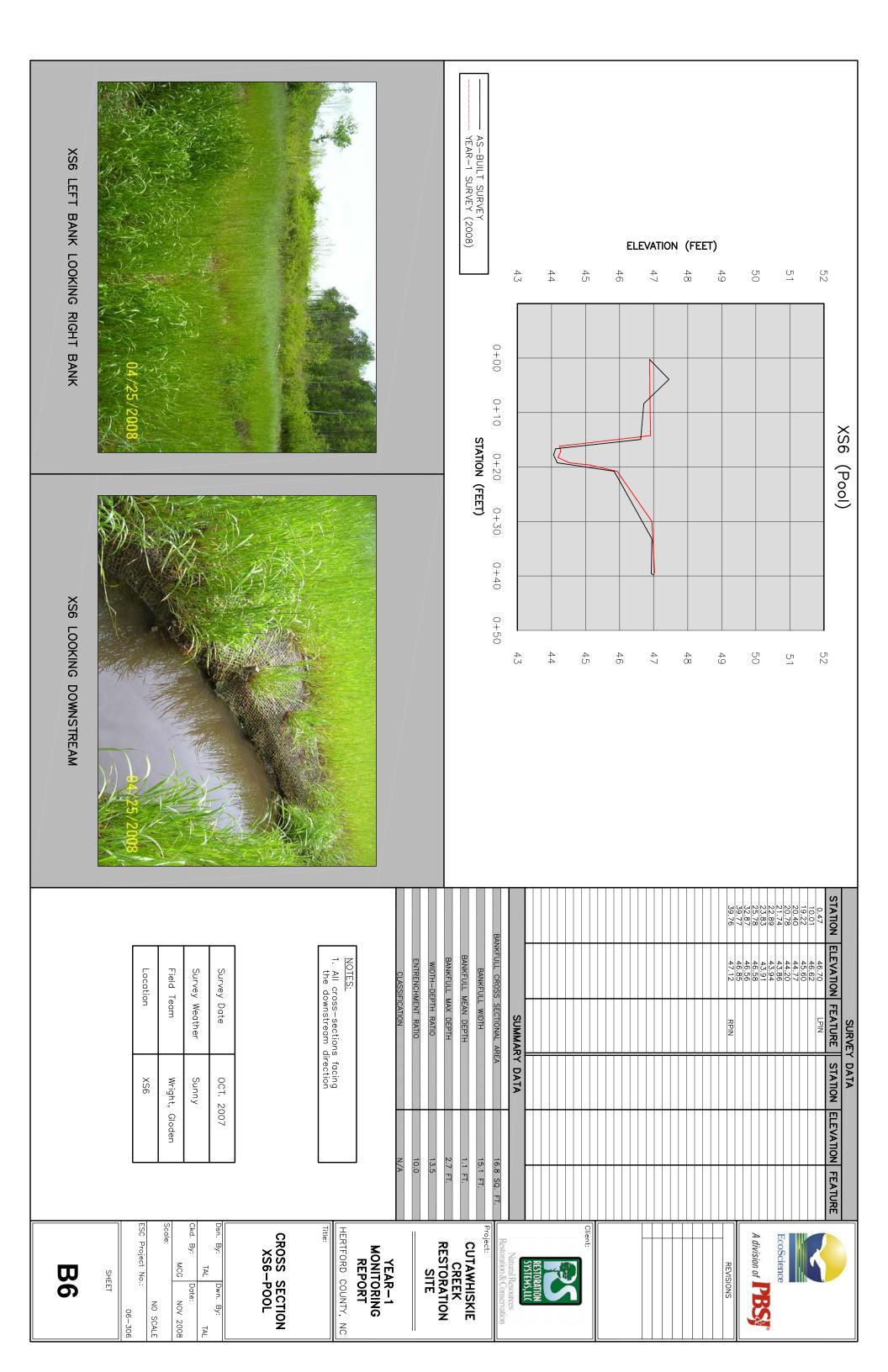


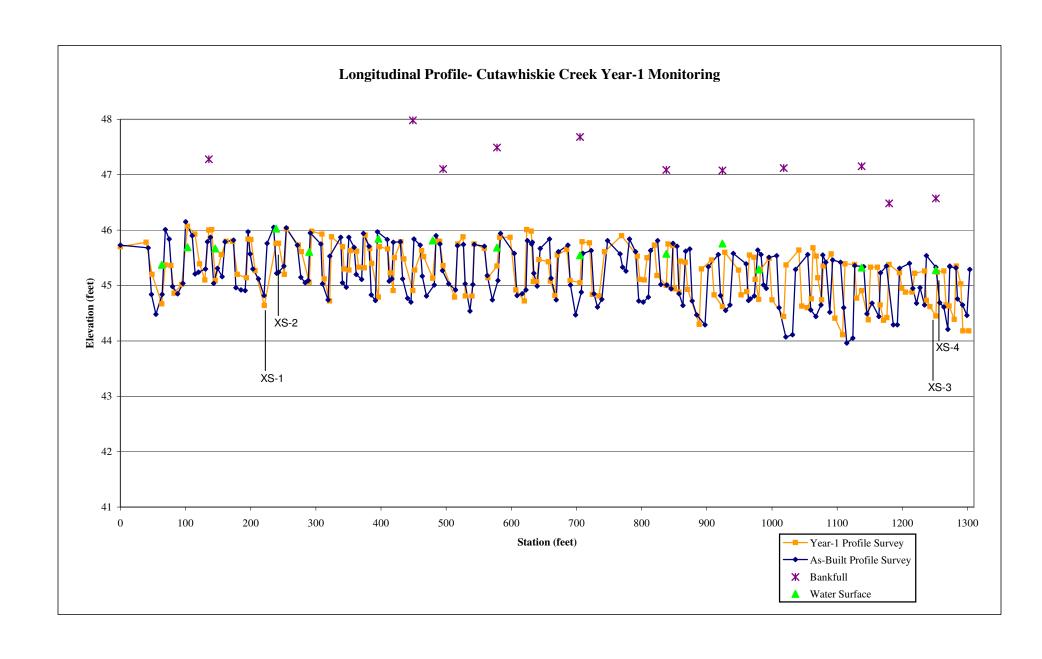

Vegetation Plot 5

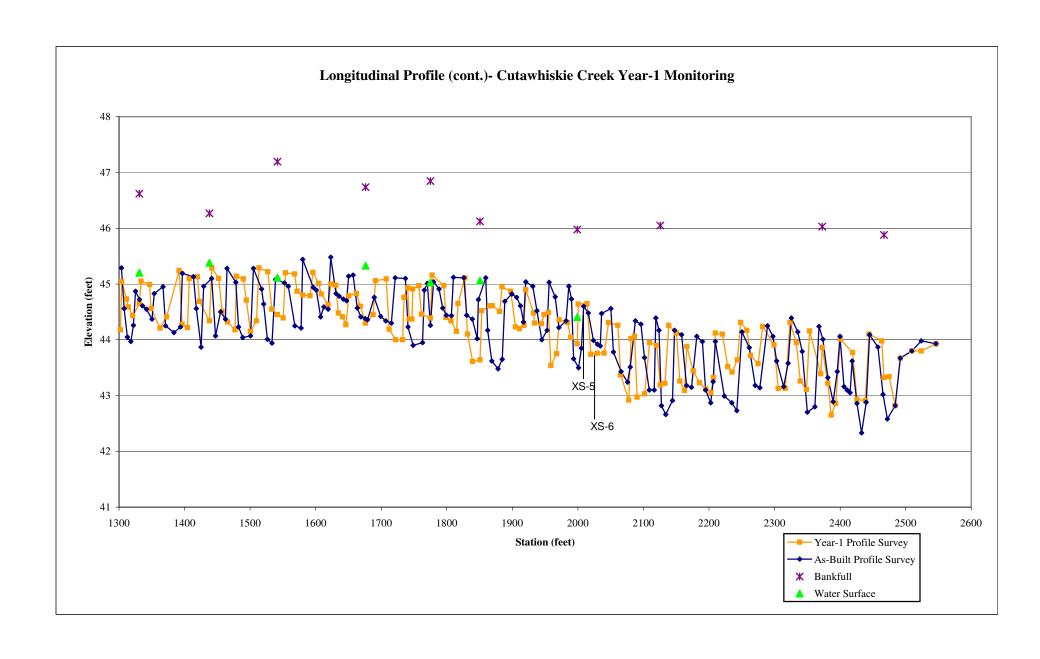


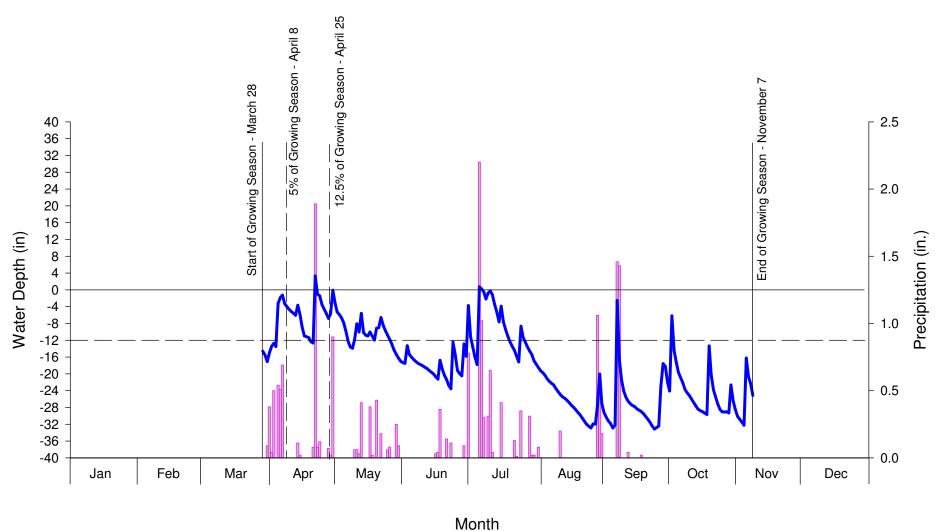

Table B2. Visual Morphological Stability Assessment Cutawhiskie Creek Restoration Site – EEPContract No. D06066-A 2,540 linear feet

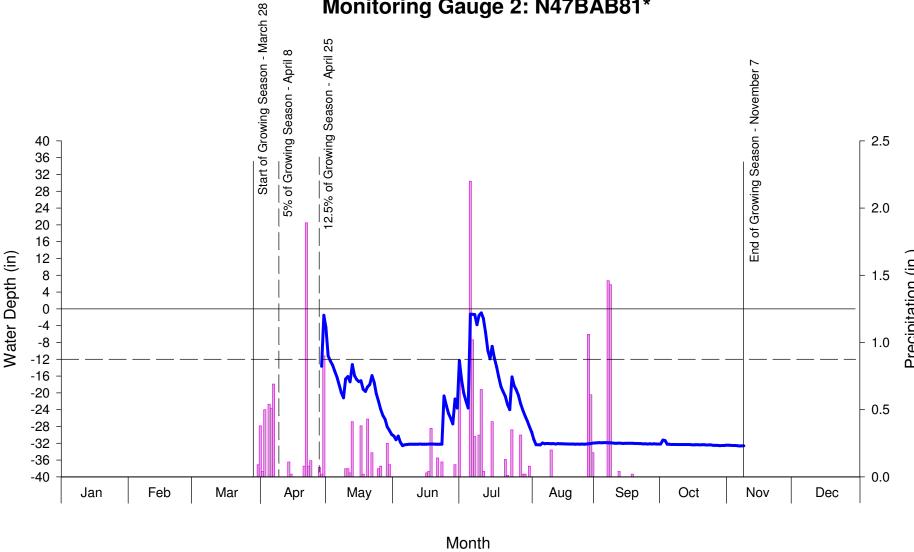

	2,540 linear	feet	1	T	T	1
Feature	Metric (per As-built and reference baselines)	(# Stable)	Total	Total	%	Feature
Category		Number	number	Number	Perform	Perform
		Performin	per	/ feet in	in Stable	Mean or
		g as	As-built	unstable	Condition	Total
		Intended		state		
A. Riffles	1. Present?	77	77	N/A	100	
	2. Armor stable (e.g. no displacement)?	77	77	N/A	100	
	3. Facet grade appears stable?	77	77	N/A	100	
	4. Minimal evidence of embedding/fining?	77	77	N/A	100	
	5. Length appropriate?	77	77	N/A	100	100%
B. Pools	1. Present? (e.g not subject to severe aggrad. or migrat.?)	76	76	N/A	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	76	76	N/A	100	
	3. Length appropriate?	76	76	N/A	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	N/A	N/A	N/A	100	
	2. Downstream of meander (glide/inflection) centering?	N/A	N/A	N/A	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	N/A	N/A	N/A	100	
	2. Of those eroding, # w/concomitant point bar formation?	N/A	N/A	N/A	100	
	3. Apparent Rc within spec?	N/A	N/A	N/A	100	
	4. Sufficient floodplain access and relief?	N/A	N/A	N/A	100	100%
E. Bed	General channel bed aggradation areas (bar formation)	N/A	N/A	0/2540	100	
General	2. Channel bed degradation – areas of increasing down-cutting or head cutting?	N/A	N/A	0/2540	100	100%
F. Bank	1. Actively eroding, wasting, or slumping	N/A	N/A	0/2540	100	100%
	, C. C. 1 C					
G. Vanes	1. Free of back or arm scour?	N/A	N/A	N/A	N/A	
	2. Height appropriate?	N/A	N/A	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	N/A	N/A	N/A	
	4. Free of piping or other structural failures? ³	N/A	N/A	N/A	N/A	N/A
	or p-p-mg or other ordered randress.	1.771	1,111	1.771	2,172	- 1/12
H. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A





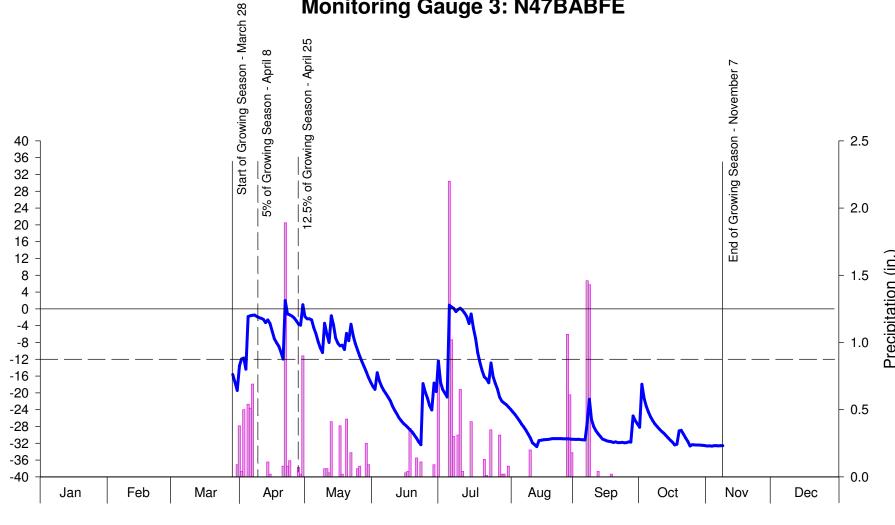






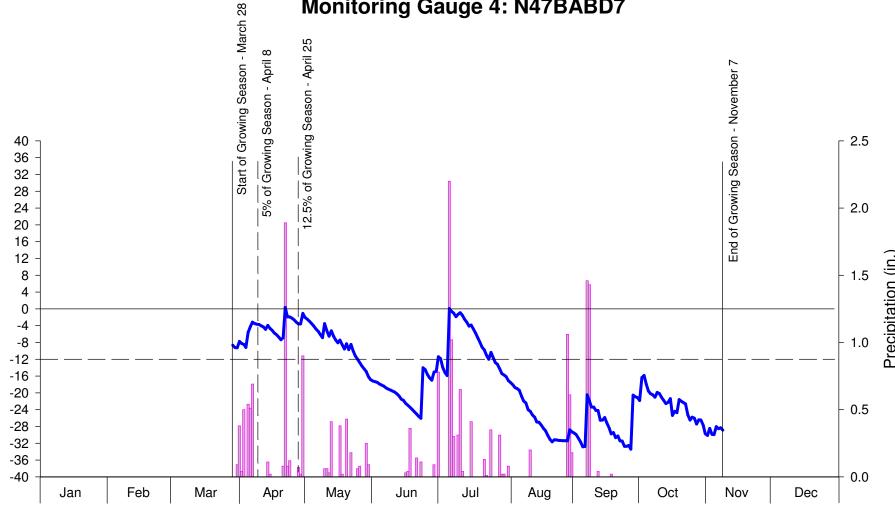
APPENDIX C: WETLAND DATA Appendix C DENR Contract No. D06066-A 2008 Monitoring Report

Cutawhiskie Creek Year-1 Monitoring - 2008 Monitoring Gauge 1: N47BAC28

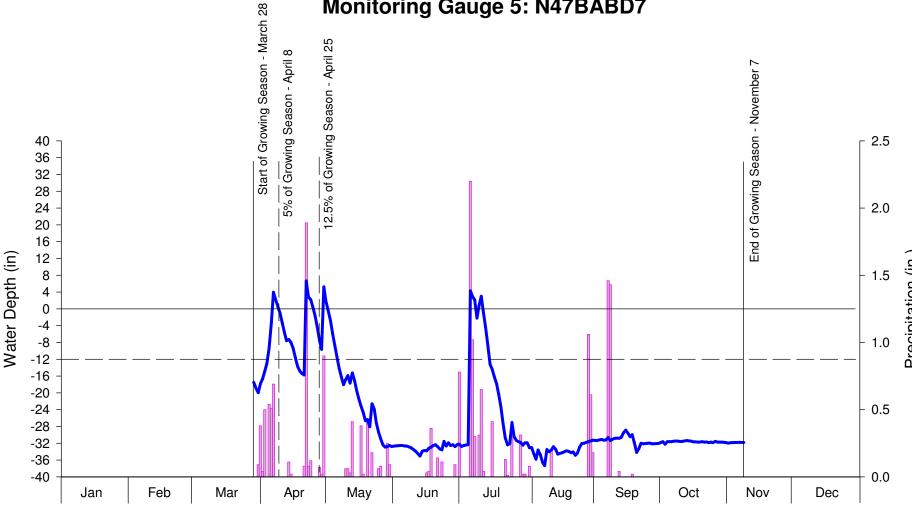

Cutawhiskie Creek Year-1 Monitoring - 2008 Monitoring Gauge 2: N47BAB81*

^{*} Gauge installed April 28, 2008

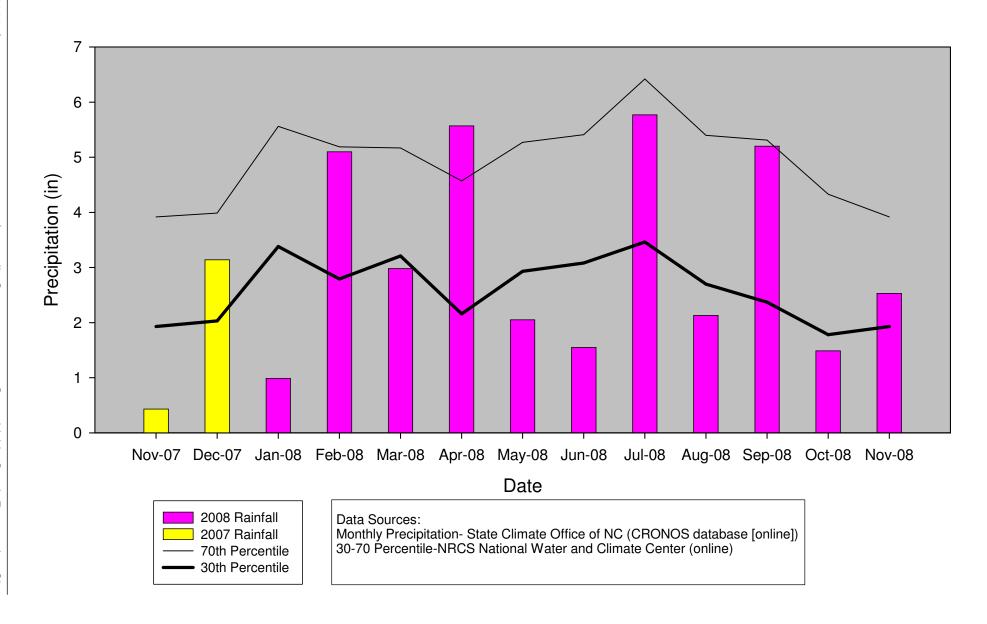
Water Depth (in)


Cutawhiskie Creek Year-1 Monitoring - 2008 Monitoring Gauge 3: N47BABFE

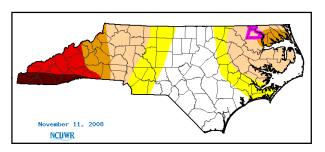
Month

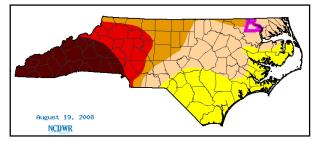

Water Depth (in)

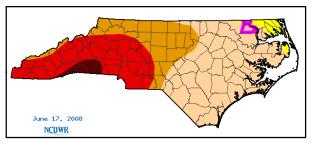
Cutawhiskie Creek Year-1 Monitoring - 2008 Monitoring Gauge 4: N47BABD7

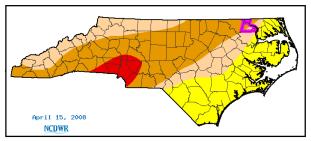

Month

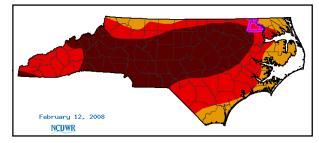
Cutawhiskie Creek Year-1 Monitoring - 2008 Monitoring Gauge 5: N47BABD7

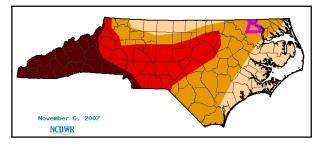

Month


Figure 3. Cutawhiskie Creek 2008 Precipitation Graph Hertford County, NC



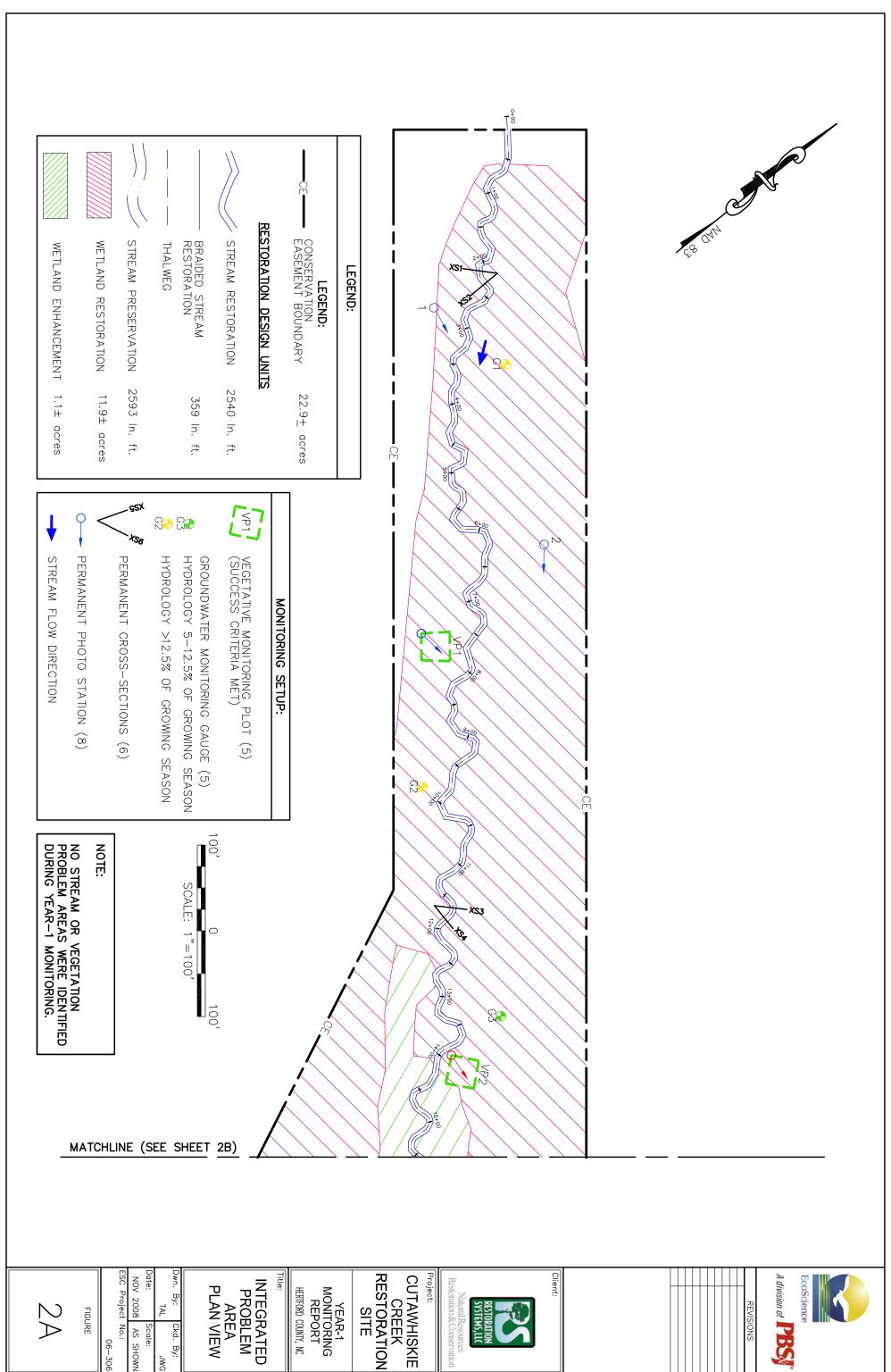

Hertford County Drought Data


D-4-	DM	Drought Level	Drought Conditions			by Percent Area			
Date	Level	Description	None	D0	D1	D2	D3	D4	
11/11/2008	D1	Moderate Drought	0.00	0.00	85.92	14.08	0.00	0.00	
11/4/2008	D1	Moderate Drought	0.00	0.00	85.92	14.08	0.00	0.00	
10/28/2008	D1	Moderate Drought	0.00	0.00	85.92	14.08	0.00	0.00	
10/21/2008	D1	Moderate Drought	0.00	0.00	84.97	15.03	0.00	0.00	
10/14/2008	D1	Moderate Drought	0.00	0.00	84.97	15.03	0.00	0.00	
10/7/2008	D1	Moderate Drought	0.00	0.00	86.35	13.65	0.00	0.00	
9/30/2008	D1	Moderate Drought	0.00	0.00	86.35	13.65	0.00	0.00	
9/23/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
9/16/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
9/9/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
9/2/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
8/26/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
8/19/2008	D1	Moderate Drought	0.00	0.00	76.26	23.74	0.00	0.00	
8/12/2008	D1	Moderate Drought	0.00	0.00	100.00	0.00	0.00	0.00	
8/5/2008	D0	Abnormally Dry	0.00	100.00	0.00	0.00	0.00	0.00	
7/29/2008	D0	Abnormally Dry	0.00	100.00	0.00	0.00	0.00	0.00	
7/22/2008	DO	Abnormally Dry	0.00	100.00	0.00	0.00	0.00	0.00	
7/15/2008	DO	Abnormally Dry	0.00	100.00	0.00	0.00	0.00	0.00	
7/8/2008	DO	Abnormally Dry	0.00	100.00	0.00	0.00	0.00	0.00	
7/1/2008	D1	Moderate Drought	0.00	5.44	94.56	0.00	0.00	0.00	
6/24/2008	D1	Moderate Drought	0.00	15.40	84.60	0.00	0.00	0.00	
6/17/2008	D1	Moderate Drought	0.00	15.40	84.60	0.00	0.00	0.00	
6/10/2008	D0	Abnormally Dry	2.87	97.13	0.00	0.00	0.00	0.00	
	- 00							_	
6/3/2008		Normal	100.00	0.00	0.00	0.00	0.00	0.00	
5/27/2008		Normal		0.00	0.00	0.00	0.00	0.00	
5/20/2008		Normal	100.00	0.00	0.00	0.00	0.00	0.00	
5/13/2008	D0	Normal		100.00	0.00			0.00	
5/6/2008 4/29/2008	D0	Abnormally Dry Abnormally Dry	0.00	100.00	0.00	0.00	0.00	0.00	
		,		28.94	71.06	0.00	0.00		
4/22/2008 4/15/2008	D1 D2	Moderate Drought	0.00		41.66		0.00	0.00	
		Severe Drought		2.20	41.66	56.15 56.15	0.00	_	
4/8/2008	D2	Severe Drought	0.00	2.20				0.00	
4/1/2008 3/25/2008	D2 D2	Severe Drought	0.00	0.00	1.96 1.96	98.04 98.04	0.00	0.00	
		Severe Drought	0.00	0.00		98.04	0.00	0.00	
3/18/2008	D2 D2	Severe Drought	0.00	0.00	1.96	98.04	0.00	0.00	
3/11/2008		Severe Drought			1.96			_	
3/4/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
2/26/2008 2/19/2008	D2	Severe Drought	0.00	0.00	0.00	100.00 52.60	0.00 47.40	0.00	
		Extreme Drought	0.00	0.00		26.78		5.54	
2/12/2008		Extreme Drought	0.00	0.00	0.00	26.78	67.67 67.67		
2/5/2008		Extreme Drought		0.00				5.54	
1/29/2008	D2	Extreme Drought	0.00		0.00	26.78 99.44	67.67 0.56	5.54	
	D2	Severe Drought	0.00	0.00	0.00			0.00	
1/15/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
1/8/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
1/1/2008	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
12/25/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
12/18/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
12/11/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
12/4/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
11/27/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
11/20/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
11/13/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
11/6/2007	D2	Severe Drought	0.00	0.00	0.00	100.00	0.00	0.00	
10/30/2007	D1	Moderate Drought	0.00	0.00	91.59	8.41	0.00	0.00	



North Carolina Drought Monitor Data

Cutawhiskie Creek Stream and Wetland Restoration Site


Hertford County, North Carolina

Dwn By:	Ckd By:
MCG	JWG
Date:	
	DEC 2008
Scale:	
	N/A
ESC Project No.	06-306

FIGURE

4

	APPENDIX D: INTE	GRATED PROBLEM	M AREA PLAN VIE	:W
INID C. (N		A 1' D		000 M ' ' ' D

CUTAWHISKIE CREEK RESTORATION SITE

